Cooperative signaling between homodimers of metabotropic glutamate receptors 1 and 5.
نویسندگان
چکیده
Metabotropic glutamate receptors (mGluRs) function as dimers. Recent work suggests that mGluR1 and mGluR5 may physically interact, but the nature and functional consequences of this relationship have not been addressed. In this study, the functional and pharmacological consequences of this interaction were investigated. Using heterologous expression of mGluR cDNA in rat sympathetic neurons from the superior cervical ganglion and inhibition of the native calcium currents as an assay for receptor activation, a functional interdependence between mGluR1 and mGluR5 was demonstrated. In neurons coexpressing these receptors, combining a selective mGluR1 competitive antagonist with either an mGluR1- or mGluR5-selective negative allosteric modulator (NAM) BAY36-7620 [(3aS,6aS)-hexahydro-5-methylene-6a-(2-naphthalenylmethyl)-1H-cyclopenta[c]furan-1-one] or MPEP [2-methyl-6-(phenylethynyl)pyridine hydrochloride], respectively, strongly occluded signaling by both receptors to an approximately equal degree. By contrast, in cells coexpressing mGluR1 and mGluR2, combining the same mGluR1 competitive inhibitor with an mGluR1 or mGluR2 NAM yielded partial and full inhibition of the response, respectively, as expected for independently acting receptors. In neurons expressing mGluR1 and mGluR5, the selective NAMs each strongly inhibited the response to glutamate, suggesting that these receptors do not interact as heterodimers, which would not be inhibited by selective NAMs. Finally, evidence for a similar mGluR1/mGluR5 functional dependence is shown in medium spiny striatal neurons. Together, these data demonstrate cooperative signaling between mGluR1 and mGluR5 in a manner inconsistent with heterodimerization, and thus suggest an interaction between homodimers.
منابع مشابه
Mechanism of Assembly and Cooperativity of Homomeric and Heteromeric Metabotropic Glutamate Receptors
G protein-coupled receptors (GPCRs) mediate cellular responses to a wide variety of extracellular stimuli. GPCR dimerization may expand signaling diversity and tune functionality, but little is known about the mechanisms of subunit assembly and interaction or the signaling properties of heteromers. Using single-molecule subunit counting on class C metabotropic glutamate receptors (mGluRs), we m...
متن کاملActivation of metabotropic glutamate receptor 1 dimers requires glutamate binding in both subunits.
Group I metabotropic glutamate receptors (mGluRs) form stable, disulfide-linked homodimers. Lack of a verifiably monomeric mGluR1 mutant has led to difficulty in assessing the role of dimerization in the molecular mechanism of mGluR1 activation. The related GABA(B) receptor exhibits striking intradimer cross talk (ligand binding at one subunit effectively produces G protein activation at the ot...
متن کامل(S)- 3,5-Dihydroxyphenylglycine )an agonist for group I metabotropic glutamate receptors( induced synaptic potentiation at excitatory synapses on fast spiking GABAergic cells in visual cortex
Introduction: (S)- 3,5-Dihydroxyphenylglycine (DHPG) is an agonist for group I metabotropic glutamate receptors. DHPG-induced synaptic depression of excitatory synapses on hippocampal pyramidal neurons is well known model for synaptic plasticity studies. The aim of the present study was to examine the effects of DHPG superfusion on excitatory synapses on pyramidal and fast-spiking GABAergic cel...
متن کاملMetabotropic glutamate receptors and their ligands applications in neurological and psychiatric disorders
Metabotropic glutamate receptors (mGluRs) consist of a large family of G-protein coupled receptors that are critical for regulating normal neuronal function in the central nervous system. The wide distribution and diverse physiological roles of various mGluR subtypes make them highly attractive targets for the treatment of a number of neurological and psychiatric disorders. The discovery of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular pharmacology
دوره 86 5 شماره
صفحات -
تاریخ انتشار 2014